1 stepped pressure equilibrium code : pc01aa

Contents

1	step	stepped pressure equilibrium code: pc01aa		
	1.1	outline	9	1
		1.1.1	nonlinear conjugate gradient method	1
		1.1.2	implementation details	1

1.1 outline

1. Use accelerated steepest descent algorithm to find minimum of energy functional.

1.1.1 nonlinear conjugate gradient method

2. The basic algorithm, as described by [1], is

$$\mathbf{v}_{n+1} = \mathbf{v}_n(1-b) + \Delta t \, \mathbf{F}(\mathbf{x}_n), \tag{1}$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \Delta t \, \mathbf{v}_{n+1}, \tag{2}$$

where \mathbf{v} is the "velocity" vector, Δt is a "time step" parameter, and b is a small "viscous-damping" parameter, chosen

$$1 - b \approx \frac{F_n^2}{F_{n-1}^2}. (3)$$

1.1.2 implementation details

- 3. The viscous-damping parameter is initialized b = 0.
- 4. The time-step is given on input, $\Delta t \equiv \text{maxstep}$.
- 5. The maximum iterations is given by the input variable maxiter. Termination is controlled by pc00ab.

pc01aa.h last modified on 2012-12-18;

[1] S. P. Hirshman and J. Breslau. Explicit spectrally optimized fourier series for nested magnetic surfaces. Phys. Plasmas, 5(7), 1998.